Esquemas alternativos para o tratamento do cancro da próstata permitindo otimização de recursos e manutenção da qualidade do tratamento
Esquemas alternativos para o tratamento do cancro da próstata permitindo otimização de recursos e manutenção da qualidade do tratamento
Índice
Este trabalho tem como objetivos determinar esquemas alternativos para o tratamento do cancro da próstata com Radioterapia Externa (EBRT) e Braquiterapia de Baixa Taxa de Dose (LDRBT) e avaliar a sensibilidade a diferentes conjuntos de parâmetros radiobiológicos.
Utilizou-se a dose biológica efetiva (BED) para determinar equivalências entre esquemas de tratamento. Recorreu-se a dois conjuntos de parâmetros considerando que i) ocorre repopulação acelerada das células tumorais durante o tratamento; ii) não ocorre repopulação.
Os esquemas hipofracionados de EBRT aumentam a probabilidade de controlo tumoral, relativamente aos regimes convencionais para os mesmos níveis de efeitos tardios retais. Na relação entre a dose total de LDRBT (TDLDRBT) e a BED de EBRT, mantendo-se a BED do regime convencional (110Gy LDRBT + 46Gy EBRT), considerando-se a repopulação, prevêem-se valores mais baixos da BED. Para determinadas quantidades de TDLDRBT adicionadas a doses normalizadas deEBRT, os parâmetros com repopulação resultam em curvas com declives mais acentuados.
A modelação mostra a viabilidade da utilização de esquemas alternativos para o tratamento do cancro da próstata, tornando possível uma otimização clínica do tratamento sem detrimento da sua qualidade. Deve ser tomada precaução na escolha dos parâmetros radiobiológicos utilizados, dado que podem levar a resultados consideravelmente distintos nos novos esquemas de fracionamento
Antipas, V., Dale, R.G. e Coles, P. (2001). A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of 125I and 103Pd. Physics in Medicine and Biology. 46: 2557-2569.
Amer, A.M., Mott, J., Mackay, R.I., Williams, P.C., Livsey, J., Logue, J.P. e Hendry, J.H. (2003). Prediction of the benefits from dose-escalated hypofractionatedintensity-modulated radiotherapy for prostate cancer. International Journal of Radiotherapy Oncology Biology Physics.56:199–207.
Barendsen, G.W. (1982). Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. International Journal of Radiotherapy Oncology Biology Physics.8:1981–1997
Brenner, D.J. (2000). Toward optimal external-beam fractionation for prostate cancer. International Journal of Radiotherapy Oncology Biology Physics.48: 315–316.
Brenner, D.J. (2003). Hypofractionation for prostate cancer radiotherapy— What are the issues? International Journal of Radiotherapy Oncology Biology Physics.57: 912–914.
Brenner, D.J. (2004). Fractionation and late rectal toxicity.International Journal of Radiotherapy Oncology Biology Physics.60: 1013–1015.
Brenner, D.J. and Hall, E.J. Fractionation and protraction for radiotherapy of prostate carcinoma. International Journal of Radiotherapy Oncology Biology Physics. 1999; 43: 1095–1101.
Brabbis, D., Martinez, A.A., Yan D., Lockman, D., Wallace, M. Gustafson, G. Chen, P., Vicini, F. e Wong, J. (2005). A dose-escalation trial with adaptative radiotherapy process as delivery system in localized prostate cancer: analysis of chronic toxicity. International Journal of Radiotherapy Oncology Biology Physics. 61: 400-408.
Brenner, D.J. (2004). Fractionation and late rectal toxicity. International Journal of Radiotherapy Oncology Biology Physics. 60: 1013–1015.
Dale, R.G. (1985). The application of the linear-quadratic dose-effect equation to fractionated and protracted radiotherapy.British Journal of Radiology. 58: 515–528.
Dale, R.G. (1989). Radiobiological assessment of permanent implants using tumour repopulation factors in the linear-quadratic model. British Journal of Radiology.62: 241–244.
Dale, R.G. (1996). Dose-rate effects in targeted radiotherapy. Physics in Medicine Biology. 41: 1871–1784.
Dale, R.G., Jones, B. e Sinclair, J.A. (2000). Dose-equivalents of tumour repopulation during radiotherapy: the potential for confusion. British Journal of Radiology. 73: 892–894.
Dearnaley, D.M. Hall, E., Lawrence, D., Huddard, R.A., Eeles, R. Nutting, C.M., Gadd, J., Warrington, A. Bidmead, M. e Horwich, A. (2005). Phase III pilot study of dose escalation using conformal radiotherapy in prostate cancer: PSA control and side effects. British Journal of Cancer.92: 488-498.
Duchesne, G.M. e Peters, L.J. (1999). What is the alpha/beta ratio for prostate cancer? Rationale for hypofractionated high-dose-ratebrachytherapy. International Journal of Radiotherapy Oncology Biology Physics.44: 747–748.
Fowler, J.F. (1989). The linear quadratic formula and progress in fractionated radiotherapy. British Journal of Radiology.62: 679–694.
Fowler, J.F. (2005). The radiobiology of prostate cancer including new aspectsof fractionated radiotherapy. Acta Oncologica. 44: 265–276.
Fowler, J.F., Chappell, R.J. e Ritter, M.A. (2002). The prospects for new treatments for prostate cancer. International Journal of Radiotherapy Oncology Biology Physics. 52: 3–5.
Fowler, J.F., Ritter, M.A., Chappell, R.J. e Brenner, D.J. (2003). What hypofractionated protocols should be tested for prostate cancer? International Journal of Radiotherapy Oncology Biology Physics. 56: 1093–1104.
Fuks, Z., Leibel, S.A., Wallner, K.E., Begg, C.B., Fair, W.R., Anderson, L.L., Hilaris, B.S. e Whitmore, W.F.(1991). The effect of local control on metastatic carcinoma of the prostate: long term results in patients treated with I-125. International Journal of Radiotherapy Oncology Biology Physics.21: 537–547.
Hanks, G.E., Hanlon, A.L., Schultheiss, T.E., Pinover, W.H., Movsas, B., Epstein, B.E. e Hunt, M.A. (1998). Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. International Journal of Radiotherapy Oncology Biology Physics. 41: 501–510.
Hanks, G.E., Lee, W.R., Hanlon, A.L., Hunt, M., Kaplan, E., Epstein, B.E., Movsas, B, e Shultheiss, T.E.(1996). Conformal technique dose escalation for prostate cancer: Improved cancer control with higher doses in patients with pretreatment PSA 10 ngm/ml. International Journal of Radiotherapy Oncology Biology Physics.35:861–868.
Hanks, G.E., Schultheiss, T.E., Hanlon, A.L., Hunt, M., Lee, W.R.,Epstein, B.E. eCoia, L.R. (1997). Optimization of conformal radiationtreatment of prostate cancer: report of a dose escalationstudy. International Journal of Radiotherapy Oncology Biology Physics. 37:543–550.
Hilaris, B.S., Whitmore, W.F.Jr, Batata, M.A. e Grabstald, H.(1974). Radiation therapy and pelvic node dissection in the management of cancer of the prostate. American Journal of Roentgenology, Radium Therapy, and Nuclear Medicine. 121: 832–838.
Junius, S., Haustermans, K., Bussels, B., Oyen, R., Vanstraelen, B., Depuydt, T., Verstraete, J., Joniau, S. e Van Poppel, H. (2007). Hypofractionated intensitymodulated irradiation for localized prostate cancer, results from aphase I/II feasibility study. Radiation Oncology. 2: 29. Acedido a 07 de Abril de 2013, em: http://www.ro-journal.com/content/2/1/29.
Kitamura, K., Shirato, H., Shinohara, N., Harabayashi, T., Onimaru, R., Fujita, K., Shimizu, S., Nonomura, K., Koyanagi, T. e Miyasaka, K. (2003). Reduction in acute morbidity using hypofractionated intensitymodulated radiation therapy assisted with a fluoroscopic real-time tumortracking system for prostate cancer: Preliminary results of a phase I/II study. Cancer Journal. 9: 268–276.
Kollmeier, M.A., Stock, R.G. e Stone, N. (2003). Biochemical outcomes after prostate brachytherapy with 5-year minimal follow-up: Importance of patient selection and implant quality. International Journal of Radiotherapy Oncology Biology Physics. 57: 645– 653.
Kupelian, A., Reddy, C.A., Carlson, T.P., Altsman, K.A. e Willoughby, T.R. (2002). Preliminary observations on biochemical relapse-free survivalrates after short-course intensity-modulated radiotherapy (70 Gy at2.5 Gy/fraction) for localized prostate cancer. International Journal of Radiotherapy Oncology Biology Physics. 53: 904–912.
Kupelian, A., Reddy, C.A., Klein, E.A. e Willoughby, T.R (2001). Shortcourseintensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction)for localized prostate cancer: Preliminary results on late toxicity andquality of life. International Journal of Radiotherapy Oncology Biology Physics.51: 988–993.
Kupelian, P.A., Thakkar, V.V., Khuntia, D., Reddy, C.A., Klein, E.A. e Mahadevan, A. (2005). Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Long-term outcomes.International Journal of Radiotherapy Oncology Biology Physics.63: 1463–1468.
Leborgne, F. e Fowler, J. (2009). Late outcomes following hypofractionated conformal radiotherapy vs. standard fractionation for localized prostate cancer: A nonrandomized contemporary comparison. International Journal of Radiotherapy Oncology Biology Physics. 74: 1441–1446.
Li, X.A., Wang, J.Z., Stewart, R.D., DiBiase, S.J., Wang, D. eLawton, C.A. (2008). Designing equivalent treatment regimens for prostate radiotherapybased on equivalent uniform dose. British Journal of Radiology. 81: 59–68.
Liao, Y., Joiner, M., Huang, Y. e Burmeister, J. (2010). Hypofractionation:What does it mean for prostate cancer treatment? International Journal of Radiotherapy Oncology Biology Physics. 76: 260–268.
Ling, C.C., Li, W.X. e Anderson, L.L. (1995). The relative biological effectiveness of I-125 and Pd-103.International Journal of Radiotherapy Oncology Biology Physics.32: 373–378.
Livsey, J.E., Cowan, R.A., Wylie, J.P., Swindell, R., Read, G., Khoo, C.S. e Logue, J.P. (2003). Hypofractionated conformal radiotherapy in carcinoma of the prostate: Five-year outcome analysis. International Journal of Radiotherapy Oncology Biology Physics. 57: 1254–1259.
Martin, J.M., Rosewall, T., Bayley, A., Bristow, R., Chung, P., Crook, J., Gospodarowicz, M., McLean, M., Me´nard, C., Milosevic, M., Warde, P., e Catton, C. (2007). Phase II trial of hypofractionated image-guided intensity-modulated radiotherapy for localized prostate adenocarcinoma. International Journal of Radiotherapy Oncology Biology Physics.69: 1084–1089.
National Comprehensive Cancer Network (2013). NCCN Clinical Practice Guidelines in Oncology: Versão 2.2013. Acedido em 07 de Abril de 2013, em, http://www.nccn.org/professionals/physician_gls/f_guidelines.asp.
Oliveira., S.M., Teixeira, N.J. e Fernandes, L. (2012). What do we know about the a/b for prostate cancer? Medical Physics. 39: 3189-3201.
Pollack, A., Zagars, G.K., Smith, L.G., Lee, J.J., von Eschenbach, A.C., Antolak, J.A., Starkshall, G. e Rosen, I. (2000). Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. Journal of Clinical Oncology. 18: 3904–3911.
Pollack, A., Zagars, G.K., Starkschall, G., Antolak, J.A., Lee, J.J., Huang, E., von Eschenbach A.C., Kuban, D.A. e Rosen, I. (2002). Prostate cancer radiation dose response: Results of the M. D. Anderson phase III randomized trial. International Journal of Radiotherapy Oncology Biology Physics. 53: 1097–1105.
Potters, L., Cao, Y., Calugaru, E.,Torre, T., Fearn, P. e Wang, X.H. (2001). A comprehensive review of CT-based dosimetry parameters and biochemical control in patients treated with permanent prostate brachytherapy. International Journal of Radiotherapy Oncology Biology Physics. 50: 605– 614.
Rene, N., Faria, S., Cury, F., David, M., Duclos, M., Shenouda, G. e Souhami, L. (2010). Hypofractionated radiotherapy for favorable risk prostate cancer.International Journal of Radiotherapy Oncology Biology Physics.77: 805–810.
Reuther, A.M., Willoughby, T.R., e Kupelian, P.A. (2002). Toxicity after hypofractionated external beam radiotherapy (70 Gy at 2.5 Gy per fraction) versus standard fractionation radiotherapy (78 Gy at 2.0 Gy per fraction) for localized prostate cancer (Abstract). International Journal of Radiotherapy Oncology Biology Physics. 54: 187–188.
Ritter, M.A., Forman, J.D., Kupelian, P.A., Petereit, D.G., Lawton, C., Walker, W., Fowler, J.F. e W. Tome, A. (2007). A phase I/II trial of dose-perfraction escalation for prostate cancer. International Journal of Radiotherapy Oncology Biology Physics.69: S174 (2007).
Ritter, M.A., Forman, J.D., Petereit, D.G., Kupelian, P.A., Wang, D., Walker, W., Fowler, J.F., Chappell, R.J. e Tome, W.A. (2006). Dose-per-fraction escalation for localized prostate cancer—A multi-institutional phase I/II trial (Abstract). International Journal of Radiotherapy Oncology Biology Physics.66: S11.
Scalliet, P. and Wambersie, A. (1987). Which RBE for iodine 125 in clinical applications? Radiotherapy and Oncology. 9: 221–230.
Stock, R.G., Stone, N.N., Kao, J.,Iannuzzi, C. e Unger, P. (2000). The effect of disease and treatment-related factors on biopsy results after prostate brachytherapy: Implications for treatment optimization. Cancer.89:1829 –1834.
Stock, R.G., Stone, N.N., Tabert, A.,Iannuzzi, C. e DeWyngaert, J.K.(1998). A dose-response studyfor I-125 prostate implants. International Journal of Radiotherapy Oncology Biology Physics.41:101–108.
Stone, N.N., Stock, R.G. e Unger, P. (2005). Intermediate term biochemical- free progression and local control following 125 iodine brachytherapy for prostate cancer. Journal of Urology.173: 803– 807.
Valicenti, R., Lu, J., Pilepich, M., Asbell, S. e Grignon, D. (2000). Survival advantage from higher-dose radiation therapy for clinically localized prostate cancer treated on the radiation therapy oncology group trials. Journal of Clinical Oncology.18: 2740–2746.
Wallner K., Merrick G., True L., Sutlief, S., Cavanagh, W. e Butler, W.(2003). 125-I versus 103-Pd for low-risk prostate cancer: Preliminary PSA outcomes from a prospective randomized multicenter trial. International Journal of Radiotherapy Oncology Biology Physics. 57: 1297–1303.
Wang, J.Z., Guerrero, M. e Allen, Li. (2003). How low is the α/β for prostate cancer? International Journal of Radiotherapy Oncology Biology Physics. 55: 194-203.
Wuu, C.S., Kliauga, P., Zaider, M. e Amols, H.I. (1996). Microdosimetric evaluation of relative biological effectiveness for 103Pd, 125I, 241Am, and 192Ir brachytherapy sources. International Journal of Radiotherapy Oncology Biology Physics. 36: 689–697.
Wu, J.S., Skarsgard, D., El-Gayed, A., Pervez, N., Tai, P., Brasher, P., Sia, M., Robinson, J.W., Joseph, K. e Pearcey, R. (2010). 4-year outcomes ofhypofractionated image-guide radiotherapy (55 Gy/16 fractions/4 weeks) for low and intermediate risk prostate cancer: A multicenterstudy (Abstract). International Journal of Radiotherapy Oncology Biology Physics.78: S188–S189.
Wuu, C.S. e Zaider, M. (1998). A calculation of the relative biological effectiveness of 125I and 103Pd brachytherapy sources using the concept of proximity function. Medical Physics. 25: 2186–2189.
Zelefsky, M.J., Leibel, S.A., Gaudin, P.B., Kutcher, G.J., Fleshner, N.E., Venkatramen, E.S., Reuter, V.E., Fair, W.R., Ling, C.C. e Fuks, Z. (1998). Dose escalation with three-dimensional conformal radiation therapy affects the outcome in prostate cancer.International Journal of Radiotherapy Oncology Biology Physics.41:491–500.
Zellmer, D.L., Shadley, J.D. and Gillin, M.T. (1994). Comparisons of measured biological response and predictions from microdosimetric data applicable to brachytherapy. Radiation Protection Dosimetry. 52: 395–403.
Zilli, T., Jorcano, S., Rouzaud, M., Dipasquale, G., Nouet, P., Toscas, J.I., Casanova, N., Wang, H., Escude, L., Molla, M., Linero, D., Weber, D.C. e Miralbell, R. (2011). Twice-weekly hypofractionated intensity-modulatedradiotherapy for localized prostate cancer with low-risk nodal involvement:Toxicity and outcome from a dose escalation pilot study. International Journal of Radiotherapy Oncology Biology Physics.81: 382–389.
Cancro da Próstata, Esquemas Alternativos, Radiobiologia,
Tratamento por Radiação