Análise por termografia de módulos termofotovoltaicos
Análise por termografia de módulos termofotovoltaicos
Índice
O coletor solar termofotovoltaico (PVT) é um equipamento que integra um módulo fotovoltaico (PV), de conversão da energia solar em elétrica, e um módulo de conversão térmica (T). Esta tecnologia visa o arrefecimento das células fotovoltaicas, para maior geração de energia elétrica, obtendo-se também energia térmica, tornando-se, assim, num equipamento de cogeração. Este dispositivo pode constituir uma alternativa ao convencional painel fotovoltaico e coletor térmico.
Ao contrário do painel fotovoltaico, onde as células operam normalmente à mesma temperatura, pois a radiação solar por célula é semelhante e as condições de arrefecimento também (ação do vento), no PVT existem temperaturas diferentes devido ao movimento do fluido térmico, logo condições de funcionamento diferentes. Fenómeno similar ocorrerá entre painéis com ligação hidráulica. Assim, a análise térmica dos PVTs permitirá estudar a variação de temperaturas entre células de um painel e entre painéis distintos e concluir sobre as limitações que as ligações hidráulicas dos painéis podem ter no seu comportamento elétrico.
Aqui, a termografia revela-se uma ferramenta ideal de estudo, em tempo real, do funcionamento de PVTs em diferentes condições. A análise por termografia é já usada na avaliação de painéis fotovoltaicos, nomeadamente no respeitante ao seu comportamento térmico e no diagnóstco de pontos quentes, sinalizadores de potenciais defeitos nas células.
Neste estudo, conclui-se que as técnicas usadas no aproveitamento térmico dos PVTs não devem ser idênticas às dos painéis térmicos.
A. Figueiredo Ramos received the Mechanical Engineering diploma (1988) and the MSc degree (1996) in Industrial Engineering from the University of Coimbra, Coimbra, Portugal. He is currently working towards the PhD degree in Industrial Engineering and Management at the University of Beira Interior, Covilhã, Portugal. He is a professor at the Polytechnic of Guarda, Guarda, Portugal. His research interests include renewable energies and energy systems.
Adérito N. Alcaso received the Electrical and Computer Engineering diploma (1990) from the Technical University of Lisbon, Lisbon, Portugal and the MSc degree in Systems and Automation (1995) and the Dr. Eng. degree in Electrical Engineering (2005) from the University of Coimbra, Coimbra, Portugal. Since 1991, he has been with the School of Technology and Management of the Polytechnic of Guarda, Guarda, Portugal, where he is currently an Adjunct Professor in the Department of Engineering and Technology and the Director of the Electrical Machines Laboratory. His research interests include renewable energy systems and electric mobility
Antonio J. Marques Cardoso received the Dipl. Eng., Dr. Eng., and Habilitation degrees from the University of Coimbra, Coimbra, Portugal, in 1985, 1995 and 2008, respectively, all in Electrical Engineering. From 1985 until 2011 he was with the University of Coimbra, Coimbra, Portugal, where he was Director of the Electrical Machines Laboratory. Since 2011 he has been with the University of Beira Interior (UBI), Covilhã, Portugal, where he is Full Professor at the Department of Electromechanical Engineering and Director of CISE – Electromechatronic Systems Research Centre (http://cise.ubi.pt).
Acciani, G., Simione, G. B., Vergura, S. (2010). Thermographic analysis of photovoltaic panels. International Conference on Renewable Energies and Power Quality, Granada, Spain.
Avdelidis, N. P., Moropoulou, A. (2004). Applications of infrared thermography for the investigation of historic Structures. Journal of Cultural Heritage. 5: 119-127.
Barreira, E., Freitas, V. (2007). Evaluation of building materials using infrared thermography. Construction and Building Materials. 21: 218-224.
Câmara, L., Pereira, G. I., Dantas, G., Castro,N., Silva, P. P. (2017). Evolution of solar photovoltaic support policies in Brazil and Portugal: a review. 3rd International Conference on Energy of Sustainability. Funchal, Portugal.
Chow, T. T. (2003). Performance analysis of photovoltaic-thermal collector by explicit dynamic model. Solar Energy. 75: 143-152.
Chow, T. T., Tiwari, G. N., Menezo, C. (2012). Hybrid Solar: A Review on Photovoltaic and Thermal Power Integration. International Journal of Photoenergy. Vol. 2012: article ID 307287.
Dualsun (2017). Acedido em 07 de Maio de 2017, em: https://dualsun.fr/en/product/2-in-1-solar/.
Edis, E., Brito, J. de, Flores-Colen, I. (2010). Diagnosis of exterior wall failures by in-situ inspection techniques – Inspection of facades with adhered ceramic cladding. Edições IST, Lisboa, Portugal.
Gul, M., Kotak, Y., Muneer, T. (2016). Review on recent trend of solar photovoltaic technology. Energy Exploration & Exploitation Journal. Vol. 34(4): 485–526.
Kumar, S., Tiwari, G. N. (2008). An experimental study of hybrid photovoltaic thermal (PV/T) – active solar still. Int J Energy Res. 32: 847-858.
Makki, A., Omer,S., Sabir, H. (2015). Advancements in hybrid photovoltaic systems for enhanced solar cells performance. Renewable and Sustainable Energy Reviews. Vol. 41: 658-684.
Mayekar, P., Kotmire, N. J., Wagh, M., Shinde, N. (2016). Review on the thermographic analysis of PV panels/system using the infrared thermal cameras. International Journal of Scientific Engineering and Applied Science. Vol. 2.
Molenbroek, E., Waddington,D. W., Emery, K. A. (1991). Hot spot susceptibility and testing of PV modules. The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference, pp. 547–552.
Moropoulou, A., Palyvos, J., Karoglou, M., Panagopoulos, V. (2007). Using IR thermography for photovoltaic array performance assessment. 4th International Conference of NDT, Chania, Crete, Greece.
Moscatiello, C., Boccaletti, C., Alcaso, A. N., Figueiredo Ramos, C. A., Marques Cardoso, A. J. (2017). Performance evaluation of a hybrid thermal-photovoltaic panel. IEEE Transactions on Industry Applications. Vol. 53, 5: 5753-5759.
Munoz, M. A., Alonso-García, M. C., Vela, N., Chenlo, F. (2011). Early degradation of silicon PV modules and guaranty conditions. Sol. Energy. Vol. 85. 9: 2264–2274.
Ramos, C. A. F., Cardoso, A. J. M., Alcaso, A. N. (2010). Hybrid Photovoltaic-Thermal Collectors: A Review. Emerg. Trends Technol. Innov., Vol. 314, pp. 477-484.
Ramos, C. A. F., Cardoso, A. J. M., Alcaso, A. N. (2011). Modeling and simulation of a hybrid photovoltaic/thermal collector. International Renewable Energy Congress, Vol. 1, pp. 455-460.
Shuklaa, A., Kanta, K., Sharmaa, A., Biwoleb, P. H. (2017). Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Solar Energy Materials & Solar Cells Journal. Vol. 160: 275–286.
Solheim, H. J., Fjær, H. G., E. A. Sørheim, E. A., Foss, S. E. (2013). Measurement and Simulation of Hot Spots in Solar Cells. Energy Procedia. Vol. 38: 183–189.
Solimpeks, Solar Energy Corp. (2017). Acedido em 07 de Maio de 2017, em: http://www.solimpeks.com/product/volther, powervolt/.
Tsanakas, J.A., Botsaris, P.N. (2009). Non-destructive in situ evaluation of a PV module performance using infrared thermography. 6th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies. Dublin, Republic of Ireland, pp. 23-25.
Veldman, D., Bennett, I. J., Brockholz, B., Jong, P. C. (2011). Non-destructive testing of crystalline silicon photovoltaic back-contact modules. 37th IEEE Photovoltaic Specialists Conference. Seattle, USA, pp. 19-24.
Villalva, M. G., Gazoli, J. R., Ruppert, F. (2009). Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics. Vol. 25. 5: 1198-1208.
Células Fotovoltaicas, Radiação Solar, Coletor Termofotovoltaico, Termografia.