Ensaio por Ultrassons em Compósitos Laminados de Polímero reforçado com Fibras
Ensaio por Ultrassons em Compósitos Laminados de Polímero reforçado com Fibras
A sustentabilidade é cada vez mais uma prioridade para as empresas e para a sociedade. Isto leva à escolha de novos materiais que tornem os produtos, como carros ou aeronaves, mais eficientes e duradouros. Com isto, o setor aeronáutico tem investido cada vez mais na utilização de polímeros reforçados com fibras (PRF). Estes materiais permitem reduzir o peso das aeroestruturas, mantendo, ou melhorando, as suas propriedades mecânicas. Por outro lado, a utilização destes compósitos laminados leva a novos desafios no controlo dos componentes, tais como descontinuidades por delaminação, falhas na adesão entre fibras e matriz polimérica, entre outros. O controlo das descontinuidades em componentes de PRF pode ser realizado através de ensaios por ultrassons (UT), devido ao seu nulo impacto no componente e a um baixo custo. Os ensaios UT possuem uma boa capacidade de deteção de descontinuidades e da sua localização. Além disto, existem sondas angulares que permitem realizar leituras em zonas de difícil acesso comparativamente com outros métodos de controlo. Os ensaios UT com phased array, ou PAUT, utiliza sondas especializadas com vários cristais emissor/recetor. Isto permite fazer várias emissões sonoras que incidem nos defeitos internos em diferentes ângulos, mitigando possíveis efeitos prejudiciais na leitura do interior dos componentes, para além disso, obtém-se uma imagem transversal da peça que facilita a visualização de descontinuidades. Este trabalho apresenta uma sistematização das descontinuidades principais detetadas em componentes em PRF, produzidos para o setor aeronáutico, bem como os principais métodos utilizados para a sua deteção.
Ensaio por Ultrassons, Phased Array, Polímeros Reforçados com Fibra, Setor Aeronáutico
Pedro Miguel Ventura Cardoso has received his mechanical engineering degree from the Setúbal School of Technology of Polytechnic Institute of Setúbal. Currently he is finishing his masters degree in Production Engineering.
José Filipe Castanheira Pereira Antunes Simões received a PhD degree from Stafordshire University– Inglaterra 2001. He is currently Coordinate Professor at Mechanical Engineering Department – Instituto Politécnico de Setúbal. His research interests are in the area of mechanical technology.
W. Elbern, & L. Guimarães. (2000). Synthetic Aperture Focusing Technique for Image Restauration (Vol. 5, Issue 08). NDT.net.
Ahmadian, H., Yang, M., & Soghrati, S. (2020). Effect of resin-rich zones on the failure response of carbon fiber reinforced polymers. International Journal of Solids and Structures, 188–189, 74–87. https://doi.org/10.1016/j.ijsolstr.2019.10.004
Akowua, K., Aucott, L., Waillis, D., Raphael, H., Remi, C., Emmanuel, B., Lamb, C., Lewtas, H., & Livesey, H. (2023). Review and down-selection of NDE technologies suitable for ITER cooling water system remote weld inspections. Fusion Engineering and Design, 196, 113980. https://doi.org/10.1016/j.fusengdes.2023.113980
Amizan, N., Rahman, A., Pusppanathan, J., & Alsayaydeh, J. (2020). Review: The Application of Imaging Techniques SAFT As An Ultrasonic Monitoring System Support. https://www.researchgate.net/publication/357537886
Costa, M. L., Almeida, S. F. M. de, & Rezende, M. C. (2001). The influence of porosity on the interlaminar shear strength of carbon/epoxy and carbon/bismaleimide fabric laminates. Composites Science and Technology, 61(14), 2101–2108. https://doi.org/10.1016/S0266-3538(01)00157-9
Dattoma, V., Willem Panella, F., Pirinu, A., & Saponaro, A. (2019). Ultrasonic and thermographic studies for CFRP inspections with real and simulated defects. Materials Today: Proceedings, 34, 224–234. https://doi.org/10.1016/j.matpr.2020.02.915
D’Orazio, T., Leo, M., Distante, A., Guaragnella, C., Pianese, V., & Cavaccini, G. (2008). Automatic ultrasonic inspection for internal defect detection in composite materials. NDT & E International, 41(2), 145–154. https://doi.org/10.1016/j.ndteint.2007.08.001
Dr. Ala Hijazi. (n.d.). Introduction to Non-Destructive Testing techniques: Ultrasonic Testing.
Drescher P., Thomas M., Borris J., Riedel U., & Arlt C. (2013). Strengthening fibre/matrix interphase by fibre surface modification and nanoparticle incorporation into the matrix. Composites Science and Technology, 74, 60–66.
Francis, D., Tatam, R. P., & Groves, R. M. (2010). Shearography technology and applications: a review. Measurement Science and Technology, 21(10), 102001. https://doi.org/10.1088/0957-0233/21/10/102001
Fu, Y., & Yao, X. (2022). A review on manufacturing defects and their detection of fiber reinforced resin matrix composites. Composites Part C: Open Access, 8. https://doi.org/10.1016/j.jcomc.2022.100276
Gomes Oliveira, D. (2019). UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENSAIOS NÃO DESTRUTIVOS: Fundamentos e Aplicações.
Guermazi, N., Haddar, N., Elleuch, K., & Ayedi, H. F. (2014). Investigations on the fabrication and the characterization of glass/epoxy, carbon/epoxy and hybrid composites used in the reinforcement and the repair of aeronautic structures. Materials & Design (1980-2015), 56, 714–724. https://doi.org/10.1016/j.matdes.2013.11.043
Guo, K., Liu, X., Ren, Y., & Jiang, H. (2023). Experimental study on crashworthiness and failure mechanisms of aeronautical multi-fibers hybrid composite corrugated structures with Carbon, Glass, Kevlar. Aerospace Science and Technology, 142. https://doi.org/10.1016/j.ast.2023.108599
Heck, M. J. R. (2017). Highly integrated optical phased arrays: photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics, 6(1), 93–107. https://doi.org/10.1515/nanoph-2015-0152
Huang, B., Ma, M., Liu, X., Shi, Z., Wang, A., Xu, G., & Yue, Q. (2024). Investigation on the fundamental mechanical properties and probabilistic characteristics of unidirectional carbon fiber reinforced polymer composite plates. Polymer Testing, 131. https://doi.org/10.1016/j.polymertesting.2024.108355
Infanta May Priya, I., & Senthil, R. (2021). Mechanical behavior of biaxial non-crimp glass fiber reinforced polymer composite. Materials Today: Proceedings, 46, 4153–4158. https://doi.org/10.1016/j.matpr.2021.02.676
Jones, C. J., Dickson, R. F., Adam, T., Reiter, H., & Harris, B. (1983). Environmental fatigue of reinforced plastics. Composites, 14(3), 288–293. https://doi.org/10.1016/0010-4361(83)90018-6
Journoud, P., Bouvet, C., Castanié, B., & Ratsifandrihana, L. (2022). Experimental analysis of the effects of wrinkles in the radius of curvature of L-shaped carbon-epoxy specimens on unfolding failure. Composites Part A: Applied Science and Manufacturing, 158, 106975. https://doi.org/10.1016/j.compositesa.2022.106975
Kappatos, V., Asfis, G., Salonitis, K., Tzitzilonis, V., Avdelidis, N. P., Cheilakou, E., & Theodorakeas, P. (2017). Theoretical Assessment of Different Ultrasonic Configurations for Delamination Defects Detection in Composite Components. Procedia CIRP, 59, 29–34. https://doi.org/10.1016/j.procir.2016.10.125
Karthik, K., Rajamani, D., Raja, T., & Subramani, K. (2022). Experimental investigation on the mechanical properties of Carbon/Kevlar fibre reinforced epoxy LY556 composites. Materials Today: Proceedings, 52, 668–674. https://doi.org/10.1016/j.matpr.2021.10.077
Khelil, M., Thomas, J.-H., Simon, L., El Guerjouma, R., & Boudraa, M. (2017). Characterization of Structural Noise Patterns and Echo Separation in the Time-Frequency Plane for Austenitic Stainless Steels. Journal of Nondestructive Evaluation, 36(2), 31. https://doi.org/10.1007/s10921-017-0409-5
Kulkarni, P., Mali, K. D., & Singh, S. (2020). An overview of the formation of fibre waviness and its effect on the mechanical performance of fibre reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 137. https://doi.org/10.1016/j.compositesa.2020.106013
Lasri, L., Nouari, M., & Mansori, M. El. (2011). Wear resistance and induced cutting damage of aeronautical FRP components obtained by machining. Wear, 271(9–10), 2542–2548. https://doi.org/10.1016/j.wear.2010.11.056
Li, S., & Chu, T. P. (2011). An Intelligent Systems Approach for Detecting Delamination Defects due to Impact Damage in CFRP Panel by Using Ultrasonic Testing. https://www.researchgate.net/publication/277010881
Liguori, F. S., Zucco, G., & Madeo, A. (2024). Variable angle tow composites in fibre-reinforced polymer bridges. Structures, 62, 106286. https://doi.org/10.1016/j.istruc.2024.106286
Machado, M. A., Antin, K.-N., Rosado, L. S., Vilaça, P., & Santos, T. G. (2021). High-speed inspection of delamination defects in unidirectional CFRP by non-contact eddy current testing. Composites Part B: Engineering, 224, 109167. https://doi.org/10.1016/j.compositesb.2021.109167
Maleki, H. R., Abazadeh, B., Arao, Y., & Kubouchi, M. (2022). Selection of an appropriate non-destructive testing method for evaluating drilling-induced delamination in natural fiber composites. NDT & E International, 126. https://doi.org/10.1016/j.ndteint.2021.102567
Ning, F., Cong, W., Qiu, J., Wei, J., & Wang, S. (2015). Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Composites Part B: Engineering, 80, 369–378. https://doi.org/10.1016/j.compositesb.2015.06.013
OLYMPUS. (n.d.-a). 1.2 História da detecção de defeitos por ultrassom. Https://Www.Olympus-Ims.Com/Pt/Ndt-Tutorials/Flaw-Detection/History/.
OLYMPUS. (n.d.-b). High-Frequency Transducers. Https://Www.Olympus-Ims.Com/En/Ultrasonic-Transducers/Highfrequency/.
Poodts, E., Minak, G., Mazzocchetti, L., & Giorgini, L. (2014). Fabrication, process simulation and testing of a thick CFRP component using the RTM process. Composites Part B: Engineering, 56, 673–680. https://doi.org/10.1016/j.compositesb.2013.08.088
PRAGMA. (2022). ASNT2022. In LinkedIn . PRAGMA.
Ratna, D. (2008). Toughened FRP composites reinforced with glass and carbon fiber. Composites Part A: Applied Science and Manufacturing, 39(3), 462–469. https://doi.org/10.1016/j.compositesa.2007.12.005
Sandeep Anand. (2019, April). (UT) Utrasonic Test Basis. Welding & NDT.
Shen, M.-Y., Guo, Z.-H., & Feng, W.-T. (2023). A study on the characteristics and thermal properties of modified regenerated carbon fiber reinforced thermoplastic composite recycled from waste wind turbine blade spar. Composites Part B: Engineering, 264. https://doi.org/10.1016/j.compositesb.2023.110878
Singh, P., Singh, S., Ojha, R., Tiwari, P., Khan, S., Kumar, R., & Gupta, A. (2022). Characterization of wear of FRP composites: A review. Materials Today: Proceedings, 64, 1357–1361. https://doi.org/10.1016/j.matpr.2022.04.236
Summa, J., Becker, M., Grossmann, F., Pohl, M., Stommel, M., & Herrmann, H.-G. (2018). Fracture analysis of a metal to CFRP hybrid with thermoplastic interlayers for interfacial stress relaxation using in situ thermography. Composite Structures, 193, 19–28. https://doi.org/10.1016/j.compstruct.2018.03.013
Suriani, M. J., Rapi, H. Z., Ilyas, R. A., Petrů, M., & Sapuan, S. M. (2021). Delamination and Manufacturing Defects in Natural Fiber-Reinforced Hybrid Composite: A Review. Polymers, 13(8), 1323. https://doi.org/10.3390/polym13081323
Ultrasonic Transducers. (n.d.). www.olympus-ims.com
Wang, T., Wu, D., Chen, W., & Yang, J. (2021). Detection of delamination defects inside carbon fiber reinforced plastic laminates by measuring eddy-current loss. Composite Structures, 268, 114012. https://doi.org/10.1016/j.compstruct.2021.114012
Wang, X., He, J., Guo, W., & Guan, X. (2021). Three-dimensional damage quantification of low velocity impact damage in thin composite plates using phased-array ultrasound. Ultrasonics, 110, 106264. https://doi.org/10.1016/j.ultras.2020.106264
Xu, J., Yin, Y., Paulo Davim, J., Li, L., Ji, M., Geier, N., & Chen, M. (2022). A critical review addressing drilling-induced damage of CFRP composites. Composite Structures, 294, 115594. https://doi.org/10.1016/j.compstruct.2022.115594
Yan, D., Sutcliffe, M., Wright, B., & Cooper, I. (2013). Ultrasonic imaging of full matrix capture acquired data for carbon fibre-reinforced polymer. Insight – Non-Destructive Testing and Condition Monitoring, 55(9), 477–481. https://doi.org/10.1784/insi.2012.55.9.477
Yang, H., Yang, L., Yang, Z., Shan, Y., Gu, H., Ma, J., Zeng, X., Tian, T., Ma, S., & Wu, Z. (2023). Ultrasonic detection methods for mechanical characterization and damage diagnosis of advanced composite materials: A review. Composite Structures, 324. https://doi.org/10.1016/j.compstruct.2023.117554
Zardan, J. P., Gueudré, C., & Corneloup, G. (2013). Study of induced ultrasonic deviation for the detection and identification of ply waviness in carbon fibre reinforced polymer. NDT & E International, 56, 1–9. https://doi.org/10.1016/j.ndteint.2013.02.001
Zhang, J., Xie, J., Zhao, X., Chen, J., & Li, Z. (2023). Influence of void defects on impact properties of CFRP laminates based on multi-scale simulation method. International Journal of Impact Engineering, 180, 104706. https://doi.org/10.1016/j.ijimpeng.2023.104706
Zhao, Q., Gao, Z., Wang, H., Wu, H., Chen, X., Qu, Z., Zhao, T., & Fang, D. (2023). On accurate characterization of interfacial morphology and damage evolution of thermoplastic composite welded joints: A microscale study via in-situ micro-CT. Composites Science and Technology, 236, 110004. https://doi.org/10.1016/j.compscitech.2023.110004