Defeitos intrínsecos ao processo de fabrico aditivo SLM
Defeitos intrínsecos ao processo de fabrico aditivo SLM
Novas técnicas avançadas de fabrico, amplamente conhecidas como impressão 3D, estão a surgir como alternativa aos métodos convencionais, ao oferecerem a possibilidade de formas altamente complexas para um tempo e uso mínimo de material, melhorando significativamente a personalização e a eficiência dos componentes manufaturados. Contudo a introdução de novos processos de fabrico, implica necessariamente, o surgimento de novos tipos de defeitos, que têm diferentes consequências na integridade estrutural dos componentes mecânicos. Como os processos de manufatura aditiva são bastante complexos, com bastantes parâmetros e condições de fabrico, o aparecimento defeitos podem ter as mais variadas origens e, portanto, torna-se fundamental caracterizar o fenômeno responsável pelo seu aparecimento. Assim, este trabalho tem como objetivo fazer uma caracterização dos principais defeitos de fabrico associados à manufatura aditiva, mais especificamente ao Selective Laser Melting (SLM) bem como fazer uma análise integral aos fenómenos responsáveis pela sua origem. Em conclusão é estabelecido um ponto de partida para o entendimento da interação entre parâmetros de fabrico, condições de fabrico e características do pó nos defeitos intrínsecos ao processo.
Selective Laser Melting, Defeitos intrínsecos, Parâmetros de fabrico.
João Filipe Gonçalves Alves ingressou em 2024 no programa Doutoral na Faculdade de Ciências e Tecnologia – Universidade Nova de Lisboa – Portugal. Tem focado a sua investigação na área da integridade estrutural, em especial no processo de fabrico Selective Laser Melting onde procura especializar-se, estando atualmente dedicado ao seu projeto de doutoramento com o título “A Data-Driven Machine Learning Approach to Predict the Fatigue Crack Growth of Lightweight Alloys for the Aeronautical Industry”.
Teresa Leonor Ribeiro Cardoso Martins Morgado tem um doutoramento em Engenharia Mecânica no Instituto Superior técnico de Lisboa. Atualmente ocupa a posição de professora associada no Departamento de Engenharia Mecânica, no Instituto Superior de Engenharia de Lisboa, e é investigadora na Unidade de Investigação e Desenvolvimento em Engenharia Mecânica e Industrial (UNIDEMI) -FCT NOVA. As suas áreas de interesse são a Integridade Estrutural e Processos de Fabrico.
Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing, 1, 77–86. https://doi.org/10.1016/j.addma.2014.08.001
Alves, J., Morgado, T., Galvão, I., Pereira, A., & Pereira, M. (2024). Development of a Life Prediction Model of Ti-6Al-4V obtained by Additive Manufacturing. Procedia Structural Integrity, 53, 236–245. https://doi.org/10.1016/j.prostr.2024.01.029
Bahnini, I., Rivette, M., Rechia, A., Siadat, A., & Elmesbahi, A. (2018). Additive manufacturing technology: the status, applications, and prospects. International Journal of Advanced Manufacturing Technology, 97(1–4), 147–161. https://doi.org/10.1007/s00170-018-1932-y
Cao, S., Chen, Z., Lim, C. V. S., Yang, K., Jia, Q., Jarvis, T., Tomus, D., & Wu, X. (2017). Defect, Microstructure, and Mechanical Property of Ti-6Al-4V Alloy Fabricated by High-Power Selective Laser Melting. In JOM (Vol. 69, Issue 12, pp. 2684–2692). Minerals, Metals and Materials Society. https://doi.org/10.1007/s11837-017-2581-6
Gong, H., Rafi, K., Gu, H., Janaki Ram, G. D., Starr, T., & Stucker, B. (2015). Influence of defects on mechanical properties of Ti-6Al-4V components produced by selective laser melting and electron beam melting. Materials and Design, 86, 545–554. https://doi.org/10.1016/j.matdes.2015.07.147
Gu, D., Xia, M., & Dai, D. (2019). On the role of powder flow behavior in fluid thermodynamics and laser processability of Ni-based composites by selective laser melting. International Journal of Machine Tools and Manufacture, 137, 67–78. https://doi.org/10.1016/j.ijmachtools.2018.10.006
Gunenthiram, V., Peyre, P., Schneider, M., Dal, M., Coste, F., Koutiri, I., & Fabbro, R. (2018). Experimental analysis of spatter generation and melt-pool behavior during the powder bed laser beam melting process. Journal of Materials Processing Technology, 251, 376–386. https://doi.org/10.1016/j.jmatprotec.2017.08.012
Guo, Q., Zhao, C., Escano, L. I., Young, Z., Xiong, L., Fezzaa, K., Everhart, W., Brown, B., Sun, T., & Chen, L. (2018). Transient dynamics of powder spattering in laser powder bed fusion additive manufacturing process revealed by in-situ high-speed high-energy x-ray imaging. Acta Materialia, 151, 169–180. https://doi.org/10.1016/j.actamat.2018.03.036
Halama, R., Kourousis, K., Pagáč, M., & Paška, Z. (2022). Cyclic plasticity of additively manufactured metals. Cyclic Plasticity of Metals: Modeling Fundamentals and Applications, 397–433. https://doi.org/10.1016/B978-0-12-819293-1.00022-X
Harkin, R., Wu, H., Nikam, S., Yin, S., Lupoi, R., McKay, W., Walls, P., Quinn, J., & McFadden, S. (2022). Powder Reuse in Laser-Based Powder Bed Fusion of Ti6Al4V—Changes in Mechanical Properties during a Powder Top-Up Regime. Materials, 15(6). https://doi.org/10.3390/ma15062238
King, W. E., Barth, H. D., Castillo, V. M., Gallegos, G. F., Gibbs, J. W., Hahn, D. E., Kamath, C., & Rubenchik, A. M. (2014). Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. Journal of Materials Processing Technology, 214(12), 2915–2925. https://doi.org/10.1016/j.jmatprotec.2014.06.005
Li, X. P., O’Donnell, K. M., & Sercombe, T. B. (2016). Selective laser melting of Al-12Si alloy: Enhanced densification via powder drying. Additive Manufacturing, 10, 10–14. https://doi.org/10.1016/j.addma.2016.01.003
Liu, Y., Yang, Y., Mai, S., Wang, D., & Song, C. (2015). Investigation into spatter behavior during selective laser melting of AISI 316L stainless steel powder. Materials and Design, 87, 797–806. https://doi.org/10.1016/j.matdes.2015.08.086
Montalbano, T., Briggs, B. N., Waterman, J. L., Nimer, S., Peitsch, C., Sopcisak, J., Trigg, D., & Storck, S. (2021). Uncovering the coupled impact of defect morphology and microstructure on the tensile behavior of Ti-6Al-4V fabricated via laser powder bed fusion. Journal of Materials Processing Technology, 294. https://doi.org/10.1016/j.jmatprotec.2021.117113
Nguyen, D. S., Park, H. S., & Lee, C. M. (2020). Optimization of selective laser melting process parameters for Ti-6Al-4V alloy manufacturing using deep learning. Journal of Manufacturing Processes, 55, 230–235. https://doi.org/10.1016/j.jmapro.2020.04.014
Soltani-Tehrani, A., Isaac, J. P., Tippur, H. V., Silva, D. F., Shao, S., & Shamsaei, N. (2023). Ti-6Al-4V powder reuse in laser powder bed fusion (L-PBF): The effect on porosity, microstructure, and mechanical behavior. International Journal of Fatigue, 167. https://doi.org/10.1016/j.ijfatigue.2022.107343
Tonelli, L., Liverani, E., Valli, G., Fortunato, A., & Ceschini, L. (2020). Effects of powders and process parameters on density and hardness of A357 aluminum alloy fabricated by selective laser melting. International Journal of Advanced Manufacturing Technology, 106(1–2), 371–383. https://doi.org/10.1007/s00170-019-04641-x
Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., Rajvanshi, N., & Kiener, C. (2017). Comparative Energy, Resource and Recycling Lifecycle Analysis of the Industrial Repair Process of Gas Turbine Burners Using Conventional Machining and Additive Manufacturing. Journal of Industrial Ecology, 21, S203–S215. https://doi.org/10.1111/jiec.12637
Weingarten, C., Buchbinder, D., Pirch, N., Meiners, W., Wissenbach, K., & Poprawe, R. (2015). Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg. Journal of Materials Processing Technology, 221, 112–120. https://doi.org/10.1016/j.jmatprotec.2015.02.013
Williams, R., Bilton, M., Harrison, N., & Fox, P. (2021). The impact of oxidised powder particles on the microstructure and mechanical properties of Ti-6Al-4 V processed by laser powder bed fusion. Additive Manufacturing, 46. https://doi.org/10.1016/j.addma.2021.102181
Yang, G., Xie, Y., Zhao, S., Qin, L., Wang, X., & Wu, B. (2022). Quality control: Internal defects formation mechanism of selective laser melting based on laser-powder-melt pool interaction: A review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(3), 100037. https://doi.org/10.1016/j.cjmeam.2022.100037
Yang, T., Liu, T., Liao, W., MacDonald, E., Wei, H., Zhang, C., Chen, X., & Zhang, K. (2020). Laser powder bed fusion of AlSi10Mg: Influence of energy intensities on spatter and porosity evolution, microstructure and mechanical properties. Journal of Alloys and Compounds, 849. https://doi.org/10.1016/j.jallcom.2020.156300
Zhan, Z., He, X., Tang, D., Dang, L., Li, A., Xia, Q., Berto, F., & Li, H. (2023). Recent developments and future trends in fatigue life assessment of additively manufactured metals with particular emphasis on machine learning modeling. In Fatigue and Fracture of Engineering Materials and Structures. John Wiley and Sons Inc. https://doi.org/10.1111/ffe.14152
Zheng, H., Li, H., Lang, L., Gong, S., & Ge, Y. (2018). Effects of scan speed on vapor plume behavior and spatter generation in laser powder bed fusion additive manufacturing. Journal of Manufacturing Processes, 36, 60–67. https://doi.org/10.1016/j.jmapro.2018.09.011